99 research outputs found

    Control of Anisotropic Crystallographic Texture in Powder Bed Fusion Additive Manufacturing of Metals and Ceramics—A Review

    Get PDF
    Additive manufacturing (AM) enables the production of complex, net-shape geometries. Additionally, in AM of metal and ceramics, which has received less attention, the microstructure and texture of the product can be arbitrarily controlled by selecting appropriate process parameters, thereby enabling unprecedented superior properties. This paper discusses recent progress pertaining to texture evolution mechanisms and control methods, with an emphasis on selective laser melting. One of the unique characteristics of AM is that the texture can be varied as a function of position within the product by controlling the scan strategy. The transient behavior of the texture and the factor used to control it via the scan strategy are discussed. In addition, the texture evolution behavior of face- and body-centered cubic as well as noncubic materials is discussed. The importance of the crystallographic “multiplicity” of the preferential crystal growth direction is described to understand the evolution behavior of the texture in such materials.Hagihara K., Nakano T.. Control of Anisotropic Crystallographic Texture in Powder Bed Fusion Additive Manufacturing of Metals and Ceramics—A Review. JOM, https://doi.org/10.1007/s11837-021-04966-7

    Enhancement of plastic anisotropy and drastic increase in yield stress of Mg-Li single crystals by Al-addition followed by quenching

    Get PDF
    Strong orientation dependence of yield stress was found in a body-centered cubic (bcc)-structured Mg-Li alloy single crystal by adding 5 at.% of Al combined with rapid quenching, which was negligible in Mg-Li binary single crystals. Furthermore, the addition of 5 at.% of Al combined with rapid quenching caused an extreme increase in yield stress up to ~470 MPa; this compares to ~50 MPa in a Mg-Li binary crystal. Increased valence-electron to atom ratio and development of chemical modulation in the alloy by Al-addition are probable causes of the enhancement of plastic anisotropy and the drastic increase in yield stress, respectively.Hagihara K., Mori K., Nakano T.. Enhancement of plastic anisotropy and drastic increase in yield stress of Mg-Li single crystals by Al-addition followed by quenching. Scripta Materialia, 172, 93. https://doi.org/10.1016/j.scriptamat.2019.07.012

    Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting

    Get PDF
    Variations in the crystallographic texture in Ni-25 at.%Mo alloys fabricated by selective laser melting with different scanning strategies were designed for the first time. Single-crystalline-like texture with a short-range order of Mo atoms can be produced via bidirectional scanning along one axis (X-scan) and bidirectional scanning with a 90° rotation in each layer (XY-scan), while only fiber texture was formed in bidirectional scanning with a 67° rotation (Rot-scan). The aligned crystal orientation along the build direction can be varied by the scanning strategy; 〈001〉 is preferred in the XY- and Rot-scan samples, while 〈101〉 is preferred in the X-scan sample. The controlling mechanisms of the texture, focusing on the preferential growth directions of the columnar cells and the following epitaxial growth, are discussed.Sun S., Hagihara K., Nakano T.. Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting. Materials and Design, 140, 307. https://doi.org/10.1016/j.matdes.2017.11.060

    Stability of crystallographic texture in laser powder bed fusion: Understanding the competition of crystal growth using a single crystalline seed

    Get PDF
    In metal additive manufacturing, crystallographic orientation control is a promising method for tailoring the functions of metallic parts. However, despite its importance in the fabrication of texture-controlled functional parts, the stability of the crystallographic texture is not widely discussed. Herein, the crystallographic texture stability under laser powder bed fusion was investigated. Two methodologies were employed. One is that a laser scanning strategy was alternately changed for a specific number of layers. The other is a “seeding” experiment in which single-crystalline substrates with controlled crystallographic orientations in the building (z-) direction and the xy-plane (perpendicular to the building direction) were used as the starting substrate. The transient zone width, where the crystallographic orientation was inherited from the layer beneath, was analyzed to evaluate the texture stability. The crystallographic direction of the seed within the xy-plane, rather than the building direction, determined the transient zone width, i.e., the texture stability. In particular, the texture in the newly deposited portion was stable when the laser scanning direction matched the orientation in the underneath layer, otherwise the crystal orientation switched rapidly, such that the orientation was parallel to the scanning direction. Interestingly, the crystallographic orientation along the building direction in the underneath layer hardly impacted the stability of the texture. Therefore, for the first time, it has been clarified that the orientation in the scanning direction, rather than the building direction, was preferentially stabilized, whereas the orientation in the other directions secondary stabilized.Ishimoto T., Hagihara K., Hisamoto K., et al. Stability of crystallographic texture in laser powder bed fusion: Understanding the competition of crystal growth using a single crystalline seed. Additive Manufacturing, 43, 102004. https://doi.org/10.1016/j.addma.2021.102004

    Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands

    Get PDF
    The mechanical properties of the Mg-based LPSO-phase are expected to be strongly affected by the microstructure due to its anisotropic crystal structure. However, the fine details have not been sufficiently understood yet. This study first clarified the detailed microstructural factors that govern the strength of the LPSO-phase by examining alloys with microstructures that were significantly varied via directional solidification and extrusion processes. Refining the microstructure is significantly effective for strengthening LPSO-phase alloys. The yield stress of LPSO-phase alloys with random texture was previously reported to be increased by reducing the “length” of plate-like LPSO-phase grains. In addition, it was found in this study that the formation stress in the deformation kink band, which is a unique deformation mode in an LPSO-phase alloy, can be increased by decreasing the “thickness” of the grains. Furthermore, the study used directionally solidified crystals provided direct evidence that the introduction of the deformation kink band effectively increases the yield stress and work-hardening rate of alloys by hindering the motion of basal dislocations. This “kink-band strengthening” was found to have considerable temperature dependence. The strengthening is significant at or below 200 °C, but the effect gradually decreases above 300 °C and is accompanied by the operation of non-basal slip. The results quantitatively clarified that kink-band strengthening is one predominant reason why the LPSO-phase extruded alloy exhibits an unusually high yield stress at any loading orientation.Hagihara K., Yamasaki M., Kawamura Y., et al. Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands. Materials Science and Engineering A, 763, 138163. https://doi.org/10.1016/j.msea.2019.138163

    Development of Zn–Mg–Ca Biodegradable Dual-Phase Alloys

    Get PDF
    In this paper, in order to achieve the development of a novel biodegradable dual-phase alloy in a Ca–Mg–Zn system, the establishment of the control strategy of degradation behavior of alloys composed of two phases was attempted by the control of alloy composition, constituent phases, and microstructure. By combining two phases with different dissolution behavior, biodegradable alloys are expected to exhibit multiple functions. For example, combining a suitable slow dissolving phase with a faster dissolving second phase may allow for dynamical concavities formation during immersion on the surface of the alloy, assisting the invasion and establishment of bone cells. Without the careful control of the microstructure, however, there is a risk that such dual-phase alloy rapidly collapses before the healing of the affected area. In this study, ten two-phase alloys consisting of various different phases were prepared and their degradation behaviors were examined. Consequently, it was found that by combining the IM3 and IM1 intermetallic phases with the compositions of Ca2Mg5Zn13 and Ca3Mg4.6Zn10.4, the expected degradation behavior can be obtained.Hagihara K., Shakudo S., Tokunaga T., et al. Development of Zn–Mg–Ca Biodegradable Dual-Phase Alloys. Metals 13, 1095 (2023); https://doi.org/10.3390/met13061095

    Fluoxetine-induced dematuration of hippocampal neurons and adult cortical neurogenesis in the common marmoset

    Get PDF
    The selective serotonin reuptake inhibitor fluoxetine (FLX) is widely used to treat depression and anxiety disorders. Chronic FLX treatment reportedly induces cellular responses in the brain, including increased adult hippocampal and cortical neurogenesis and reversal of neuron maturation in the hippocampus, amygdala, and cortex. However, because most previous studies have used rodent models, it remains unclear whether these FLX-induced changes occur in the primate brain. To evaluate the effects of FLX in the primate brain, we used immunohistological methods to assess neurogenesis and the expression of neuronal maturity markers following chronic FLX treatment (3 mg/kg/day for 4 weeks) in adult marmosets (n = 3 per group). We found increased expression of doublecortin and calretinin, markers of immature neurons, in the hippocampal dentate gyrus of FLX-treated marmosets. Further, FLX treatment reduced parvalbumin expression and the number of neurons with perineuronal nets, which indicate mature fast-spiking interneurons, in the hippocampus, but not in the amygdala or cerebral cortex. We also found that FLX treatment increased the generation of cortical interneurons; however, significant up-regulation of adult hippocampal neurogenesis was not observed in FLX-treated marmosets. These results suggest that dematuration of hippocampal neurons and increased cortical neurogenesis may play roles in FLX-induced effects and/or side effects. Our results are consistent with those of previous studies showing hippocampal dematuration and increased cortical neurogenesis in FLX-treated rodents. In contrast, FLX did not affect hippocampal neurogenesis or dematuration of interneurons in the amygdala and cerebral cortex

    Plastic deformation mechanisms of biomedical Co–Cr–Mo alloy single crystals with hexagonal close-packed structure

    Get PDF
    This is the first report of the successful fabrication of Co–Cr–Mo biomedical alloy single crystals with a hexagonal close-packed (hcp) structure and the resultant clarification of its deformation behavior. The (0001)〈112¯0〉 basal and {11¯00}〈112¯0〉 prismatic slip systems were found to be predominately operative. The critical resolved shear stresses for the basal and prismatic slip systems at ambient temperature are ~ 204 and ~ 272 MPa, respectively, which are much higher than ~ 54 MPa for {111}〈112¯〉 slip in the face-centered cubic (fcc) Co–Cr–Mo phase, quantitatively demonstrating that the hcp phase acts as an effective strengthening phase.Kaita W., Hagihara K., Rocha L., et al. Plastic deformation mechanisms of biomedical Co–Cr–Mo alloy single crystals with hexagonal close-packed structure. Scripta Materialia, 142, 111. https://doi.org/10.1016/j.scriptamat.2017.08.016

    Surprising increase in yield stress of Mg single crystal using long-period stacking ordered nanoplates

    Get PDF
    Mg–Zn–Y ternary alloys containing the long-period stacking ordered (LPSO) phase exhibit superior mechanical properties. This is believed to be originating from the LPSO phase acting as the strengthening phase. However, we first clarify that the mechanical properties of the matrix Mg solid solution in the Mg/LPSO two-phase alloy are significantly different from those of pure Mg. The yield stress of a Mg99.2Zn0.2Y0.6 single crystal (matrix Mg solid solution) is almost the same as that of an LPSO single-phase alloy. This is ascribed to the formation of thin stacking-fault-like defects, named “LPSO nanoplate”. In Mg99.2Zn0.2Y0.6, kink-band formation is induced in the same manner as that in the LPSO phase in deformation, resulting in high strength accompanied with increased ductility. Our results suggest that the strengthening mechanism of the Mg/LPSO two-phase alloy must be reconsidered depending on the microstructure. Furthermore, the results suggest that new ultrahigh-strength Mg alloys, which have much lower Zn and Y contents but the mechanical properties are comparable or superior than the present Mg/LPSO two-phase alloys, are expected to be developed via the appropriate control of LPSO nanoplate microstructures.Hagihara K., Ueyama R., Yamasaki M., et al. Surprising increase in yield stress of Mg single crystal using long-period stacking ordered nanoplates. Acta Materialia, 209, 116797. https://doi.org/10.1016/j.actamat.2021.116797

    Strain-rate dependence of deformation behavior of LPSO-phases

    Get PDF
    This is the first report clarifying the influence of the strain rate on the deformation behavior of Mg-based long-period stacking ordered (LPSO) phases with 14H, 18R, and 10H structures. The flow stress by basal slip showed a weakly positive or negligible strain-rate dependence, while the flow stress accompanied by the formation of deformation kink bands showed a unique negative strain-rate dependence. These results give the first experimental evidence on the recent proposal that Zn and Y atoms segregate at the kink band boundaries and hinder their migration, from the viewpoint of the mechanical properties.Hagihara K., Li Z., Yamasaki M., et al. Strain-rate dependence of deformation behavior of LPSO-phases. Materials Letters 214, 119 (2018); https://doi.org/https://doi.org/10.1016/j.matlet.2017.11.117
    • 

    corecore